Seaborn heatmap tutorial (Python Data Visualization)

In this tutorial, we will represent data in a heatmap form using a Python library called seaborn. This library is used to visualize data based on Matplotlib.

You will learn what is a heatmap, how to create it, how to change its colors, adjust its font size, and much more, so let’s get started.


What is a heatmap?

The heatmap is a way of representing the data in a 2-dimensional form. The data values are represented as colors in the graph. The goal of the heatmap is to provide a colored visual summary of information.

Create a heatmap

To create a heatmap in Python, we can use the seaborn library. The seaborn library is built on top of Matplotlib. Seaborn library provides a high-level data visualization interface where we can draw our matrix.

For this tutorial, we will use the following Python components:

  • Python 3 (I’ll use Python 3.7)
  • Pandas
  • Matplotlib
  • Numpy
  • Seaborn

To install seaborn, run the pip command as follows:

Install Seaborn

Seaborn supports the following plots:

  • Distribution Plots
  • Matrix Plots
  • Regression Plots
  • Time Series Plots
  • Categorical Plots

Okay, let’s create a heatmap now:

Import the following required modules:

We imported the numpy module to generate an array of random numbers between a given range which will be plotted as a heatmap.

A 2-dimensional array is created with 4 rows and 6 columns. Now let’s store these array values in the heatmap. We can create a heatmap by using the heatmap function of the seaborn module. Then we will pass the data as follows:

Using matplotlib, we will display the heatmap in the output:

Show Seaborn heatmap

Congratulations! Your first heatmap is just created!


Remove heatmap x tick labels

The values in the x axis and y axis for each block in the heatmap are called tick labels. The tick labels are added by default. If we want to remove the tick labels, we can set the xticklabel or ytickelabel attribute of seaborn heatmap to False as below:

Set y axis label

Set heatmap x axis label

We can add a label in x axis by using the xlabel attribute of Matplotlib as shown in the following code:

Using xlabel attribute

The result will be as follows:

Show label using xlabel


Remove heatmap y tick labels

The labels for y axis are added by default. To remove them, we can set the yticklabels to false.

Set y axis label


Set heatmap y axis label

You can add the label in y axis by using the ylabel attribute of Matplotlib as shown:


Using ylabel attribute


Changing heatmap color

You can change the color of seaborn heatmap by using the color map using the cmap attribute of the heatmap.

Consider the code below:

Change Seaborn heatmap color

Here cmap equals YlGnBu which represents the following color:

Heatmap color

In Seaborn heatmap, we have three different types of colormaps.

  1. Sequential colormaps
  2. Diverging color palette
  3. Discrete Data

Sequential colormap

The sequential color map is used when the data range from a low value to a high value. The sequential colormap color codes can be used with the heatmap() function or the kdeplot() function.

The sequential color map contains the following colors:

Sequential color map

This image is taken from

Sequential cubehelix palette

The cubehelix is a form of the sequential color map. The cubehelix is used when there the brightness is increased linearly and when there is a slight difference in hue.

The cubehelix palette looks like the following:

Cubehelix palette

You can implement this palette in the code using the cmap attribute:

The result will be:

Using cubehelix palette

Diverging color palette

You can use the diverging color palette when the high and low values are important in the heatmap.

The divergent palette creates a palette between two HUSL colors. It means that the divergent palette contains two different shades in a graph.

You can create the divergent palette in seaborn as follows:

Here 200 is the value for palette on the left side and 100 is the code for palette on the right side. The variable n defines the number of blocks. In our case, it is 11. The palette will be as follows:

Divergent palette

Discrete Data

In Seaborn, there is a built-in function called mpl_palette which returns discrete color patterns. The mpl_palette method will plot values in a color palette. This palette is a horizontal array.

The diverging palette looks like the following:

Diverging palette

This output is achieved using the following line of code:

The argument Set3 is the name of the palette and 11 is the number of discrete colors in the palette. The palplot method of seaborn plots the values in a horizontal array of the given color palette.


Add text over heatmap

To add text over the heatmap, we can use the annot attribute. If annot is set to True, the text will be written on each cell. If the labels for each cell is defined, you can assign the labels to the annot attribute.

Consider the following code:

The result will be as follows:

Add text over Seaborn heatmap

We can customize the annot value as we will see later.

Adjust heatmap font size

We can adjust the font size of the heatmap text by using the font_scale attribute of the seaborn like this:

Now define and show the heatmap:

The heatmap will look like the following after increasing the size:

Set heatmap font size


Seaborn heatmap colorbar

The colorbar in heatmap looks like the one as below:

Seaborn heatmap colorbar

The attribute cbar of heatmap is a Boolean attribute which if set to true tells if it should appear in the plot or not. If the cbar attribute is not defined, the color bar will be displayed in the plot by default. To remove the color bar, set cbar to False:

Hide colorbar

To add a color bar title, we can use the cbar_kws attribute.

The code will look like the following:

Set colorbar title

In the cbar_kws, we have to specify what attribute of the color bar we are referring to. In our example, we are referring to the label (title) of the color bar.

Similarly, we can change the orientation of the color. The default orientation is vertical as in the above example.

To create a horizontal color bar define the orientation attribute of the cbar_kws as follows:

The resultant color bar will be like the following:

Horizontal colorbar


Change heatmap colorbar font size

If we need to change the font size of all the components of seaborn, you can use the font_scale attribute of Seaborn.

Let’s set the scale to 1.8 and compare a scale 1 with 1.8:

This result for scale 1:

Small colorbar font size

And the scale of 1.8 will look like this:

Large colorbar font size


Change the rotation of tick axis

We can change the tick labels rotation by using the rotation attribute of the required ytick or xtick labels.

First, we define the heatmap like this:

This is a regular plot with random data as defined in the earlier section.

Notice the original yticklabels in the following image:

Original ytick labels

To rotate them, we will first get the yticklabels of the heatmap and then set the rotation to 0:

In the set_yticklabels, we passed two arguments. The first one gets the yticklabels of the heatmap and the second one sets the rotation. The result of the above line of code will be as follows:

Rotated y tick labels

The rotation attribute can be any angle:

y tick rotation angel


Add text and values on the heatmap

In the earlier section, we only added values on the heatmap. In this section, we will add values along with the text on the heatmap.

Consider the following example:

Create random test data:

Now create an array for the text that we will write on the heatmap:

Now we have to combine the text with the values and add the result onto heatmap as a label:

Okay, so here we passed the data in the text array and in the data array and then flatten both arrays into simpler text and zip them together. The resultant is then reshaped to create another array of the same size which now contains both text and data.

The new array is stored in a variable called labels. The labels variable will be added to heatmap using annot:

The attribute fmt is a string which should be added when adding annotation other than True and False.

On plotting this heatmap, the result will be as follows:

Add text and values on heatmap

Working with seaborn heatmaps is very easy. I hope you find the tutorial useful.

Thank you.

Mokhtar Ebrahim
I'm working as a Linux system administrator since 2010. I'm responsible for maintaining, securing, and troubleshooting Linux servers for multiple clients around the world. I love writing shell and Python scripts to automate my work.

4 thoughts on “Seaborn heatmap tutorial (Python Data Visualization)

  1. Hi I was wondering where can I find more information on the keyword “fmt’?
    I tried looking for it in documentation but I didn’t find any

    1. You can find more about any undocumented attribute on the comments in the code of the class itself.
      If you are using PyCharm, you can hold Ctrl key and click on any function and see more info.

Leave a Reply

Your email address will not be published. Required fields are marked *