Parsing XML Files into DataFrames using Pandas read_xml

The read_xml function in Pandas is used to read XML (eXtensible Markup Language) files and convert them into DataFrames.

Let’s dive into practical examples to understand how it works.

 

 

Pandas read_xml Syntax

The basic syntax for pandas.read_xml is:

pandas.read_xml(
    path_or_buffer,
    xpath=None,
    namespaces=None,
    elems_only=True,
    attrs_only=False,
    names=None,
    encoding=None,
    parser="lxml",
    stylesheet=None,
    compression="infer",
    storage_options=None,
    dtype_backend=None,
    **kwargs
)

The key parameters are:

  1. path_or_buffer: The path to the XML file, URL, or file-like object.
  2. xpath: XPath expression to select specific portions of the XML to be parsed.
  3. namespaces: A dictionary containing XML namespaces for refining selections using XPath.
  4. elems_only: If True, only elements’ text values are parsed. If False, both elements and attributes are parsed.
  5. attrs_only: If True, only attributes’ values are parsed. If False, elements’ values are parsed.
  6. names: A list of column names for the resulting DataFrame.
  7. encoding: Encoding type for the XML. Defaults to UTF-8.
  8. parser: XML parser to use (lxml or etree).
  9. stylesheet: Path to an XSLT stylesheet file to transform the XML data before parsing.
  10. compression: The compression type (‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None). If ‘infer’, the file extension is used to determine the compression type.
  11. storage_options: Extra options for storage connection if needed.
  12. dtype_backend: Backend to use for dtype inference (“python” or “lxml”).

 

Read from Various Sources

Whether you have an XML file on your local disk, a URL that returns XML data, or a file-like object, read_xml can read XML from these sources.

Read from a Local XML File

Let’s start with the most common scenario: reading from a local XML file.

import pandas as pd
xml_data = """
<data>
    <row>
        <shape>square</shape>
        <degrees>360</degrees>
        <sides>4.0</sides>
    </row>
    <row>
        <shape>triangle</shape>
        <degrees>180</degrees>
        <sides>3.0</sides>
    </row>
</data>
"""

with open("shapes.xml", "w") as file:
    file.write(xml_data)
df = pd.read_xml("shapes.xml")
print(df)

Output:

     shape  degrees  sides
0   square      360    4.0
1  triangle    180    3.0

Here, we’ve written a simple XML string to a file named shapes.xml and then read it into a DataFrame using read_xml.

Read from a URL

Sometimes your data is hosted online. In that case, read_xml can directly read from a URL.

url = "https://example.com/data.xml"
df = pd.read_xml(url)

Read from File-like Objects

If you have file-like objects (e.g., from requests or in-memory files). Here’s how to use read them:

from io import StringIO
xml_data = """
<data>
    <row>
        <name>John</name>
        <age>28</age>
    </row>
    <row>
        <name>Jane</name>
        <age>24</age>
    </row>
</data>
"""
data_io = StringIO(xml_data)
df = pd.read_xml(data_io)
print(df)

Output:

   name  age
0  John   28
1  Jane   24

In this example, we simulate a file-like object using StringIO and then read the XML data from it into a DataFrame.

 

Choosing an XML parser

Pandas’ read_xml provides the flexibility to choose among different XML parsers. The parser you choose can impact performance, so it’s worth understanding the options available.

The lxml Parser

By default, read_xml uses the ‘lxml’ parser. ‘lxml’ is efficient and suitable for large XML files.

df = pd.read_xml("shapes.xml", parser="lxml")
print(df)

Output:

     shape  degrees  sides
0   square      360    4.0
1  triangle    180    3.0

This code explicitly specifies the lxml parser, although it would be the default even if you didn’t specify it.

The etree Parser

Another option is the etree parser from Python’s standard library.

df = pd.read_xml("shapes.xml", parser="etree")
print(df)

Output:

     shape  degrees  sides
0   square      360    4.0
1  triangle    180    3.0

Benchmark Parsers

For the purpose of this demonstration, I’ll first generate a large XML file. Then, I’ll benchmark the read_xml() function using both parsers.

We’ll generate a large XML file with 1 million entries to compare the performance.

import pandas as pd
import random
import time

# Step 1: Generate a large XML file
num_entries = 1000000
shapes = ["triangle", "square", "pentagon", "hexagon"]

xml_data = ''
for _ in range(num_entries):
    shape = random.choice(shapes)
    xml_data += f'{shape}{random.randint(100, 400)}{random.randint(3, 6)}'
xml_data += ''

with open("large_sample.xml", "w") as f:
    f.write(xml_data)

file_path ="large_sample.xml"

# Benchmark for lxml parser
start_time_lxml = time.time()
df_lxml = pd.read_xml(file_path, parser="lxml")
end_time_lxml = time.time()
lxml_duration = end_time_lxml - start_time_lxml

# Benchmark for etree parser
start_time_etree = time.time()
df_etree = pd.read_xml(file_path, parser="etree")
end_time_etree = time.time()
etree_duration = end_time_etree - start_time_etree

print(lxml_duration)
print(etree_duration)

Output:

44.94610905647278
18.623760223388672

The etree parser is much faster.

 

Specify Column Names

Consider an XML file named persons.xml with the following content:

<data>
    <row>
        <nm>John</nm>
        <ag>28</ag>
    </row>
    <row>
        <nm>Jane</nm>
        <ag>24</ag>
    </row>
</data>

Notice that the column tags are abbreviated (nm for name and ag for age). If you want to rename these columns to more descriptive names when reading the XML into a DataFrame, you can use the names parameter.

df = pd.read_xml("persons.xml", names=["name", "age"])
print(df)

Output:

   name  age
0  John   28
1  Jane   24

 

Handling Compressed XML Files

Pandas’ read_xml comes equipped with the ability to read compressed XML files directly without the need for manual decompression.

Read GZIP Compressed XML

Let’s say you have an XML file compressed using GZIP, with the filename data.xml.gz.

To read this into a DataFrame:

df = pd.read_xml("data.xml.gz", compression='gzip')
print(df)

Read BZIP2 Compressed XML

If your XML file is compressed using BZIP2, e.g., data.xml.bz2:

df = pd.read_xml("data.xml.bz2", compression='bz2')
print(df)

Read ZIP Compressed XML

For XML files within a ZIP archive, say data.xml.zip:

df = pd.read_xml("data.xml.zip", compression='zip')
print(df)

Auto-detecting Compression

In many cases, you don’t even have to specify the compression type. read_xml is smart enough to auto-detect the compression from file extensions like .gz, .bz2, and .zip.

df = pd.read_xml("data.xml.gz")
print(df)

This code will work seamlessly, even without the compression parameter, because of the .gz file extension.

 

Advanced Storage Connection Options

The storage_options parameter in read_xml allows you to pass extra options required to connect to storage systems such as cloud storage.

Read from S3 Bucket with Authentication

Suppose your XML data is stored on an S3 bucket, and accessing this data requires specific credentials. Here’s how to use storage_options:

s3_path = "s3://your_bucket_name/path_to_file.xml"
df = pd.read_xml(s3_path, 
                 storage_options={"key": "your_access_key", 
                                  "secret": "your_secret_key"})
print(df)

Using with Other Storage Systems

storage_options is not limited to S3. You can use it to pass connection parameters required by various storage systems, like GCS (Google Cloud Storage), Azure Blob Storage, and others.

For example, connecting to GCS will look something like this:

gcs_path = "gcs://your_bucket_name/path_to_file.xml"
df = pd.read_xml(gcs_path, 
                 storage_options={"token": "your_gcs_token"})
print(df)

 

Using XPath Expressions to Select Data

XPath is a powerful querying language that allows you to deal with complex XML structures where you need to extract specific sections or attributes.

The xpath parameter in read_xml function allows you to utilize XPath expressions.

Basic XPath Selection

Consider an XML file products.xml with the following structure:

<products>
    <product category="electronics">
        <name>Smartphone</name>
        <price>500</price>
    </product>
    <product category="books">
        <name>Python Guide</name>
        <price>30</price>
    </product>
</products>

To select only the products in the “electronics” category:

df = pd.read_xml("products.xml", xpath="//product[@category='electronics']")
print(df)

Output:

      category        name  price
0  electronics  Smartphone    500

Extracting Specific Elements

You can further refine your selection. To extract only the names of products in the “electronics” category:

df = pd.read_xml("data.xml", xpath="//product[@category='electronics']")
df_name = df['name']
print(df_name)

Output:

0    Smartphone
Name: name, dtype: object

Using Functions in XPath

XPath provides various functions to make your selections more dynamic. For example, to select products that are priced above 100:

df = pd.read_xml("products.xml", xpath="//product[number(price)>100]")
print(df)

Output:

      category        name  price
0  electronics  Smartphone    500

 

Working with XML Namespaces

XML namespaces are used to differentiate between elements with the same name but defined in different XML vocabularies.

They’re crucial for avoiding naming conflicts in XML documents.

Consider the following XML, saved as data.xml, which uses namespaces:

<root xmlns:product="http://www.example.com/product" xmlns:price="http://www.example.com/price">
    <product:item>
        <product:name>Laptop</product:name>
        <price:value>1000</price:value>
    </product:item>
    <product:item>
        <product:name>Mouse</product:name>
        <price:value>20</price:value>
    </product:item>
</root>

Notice the xmlns:product and xmlns:price attributes defining the XML namespaces for product and price, respectively.

Parse XML with Namespaces in Pandas

To parse the XML with namespace, we need to provide these namespaces to the read_xml function.

namespaces = {
    "product": "http://www.example.com/product",
    "price": "http://www.example.com/price"
}
df = pd.read_xml("data.xml", xpath="//product:item", namespaces=namespaces)
print(df)

Output:

     name  value
0  Laptop   1000
1   Mouse     20

In the code, we provide a dictionary of namespaces and use the namespaces parameter.

This ensures that Pandas can correctly interpret the XML namespaces and extract the relevant data.

XPath with Namespaces

When querying elements within a namespace, you’ll use the prefix you’ve defined:

namespaces = {
    'product': 'http://www.example.com/product',
    'price': 'http://www.example.com/price'
}
df = pd.read_xml("data.xml", xpath="//product:item", namespaces=namespaces)
product_names = df["name"]
print(product_names)

Output:

0    Laptop
1     Mouse
Name: name, dtype: object

This code specifically extracts the product names using the product namespace prefix.

 

Reading Only Element Values

The read_xml function provides the elems_only parameter to read only the element values, excluding any attributes.

Consider this XML, saved as products.xml:

<products>
    <item type="electronics">
        <name>Laptop</name>
        <price>1000</price>
    </item>
    <item type="accessory">
        <name>Mouse</name>
        <price>20</price>
    </item>
</products>

Each item element has a type attribute along with child elements for the product name and price.

Parse XML Ignoring Attributes

To read only the element values and ignore attributes like type, you’d set elems_only=True:

df = pd.read_xml("products.xml", elems_only=True)
print(df)

Output:

     name  price
0  Laptop   1000
1   Mouse     20

For comparison, here’s what happens when you don’t specify elems_only:

df_default = pd.read_xml("products.xml")
print(df_default)

Output:

          type    name  price
0  electronics  Laptop   1000
1    accessory   Mouse     20

In the default behavior, both the attribute type and the element values name and price are included in the resulting DataFrame.

 

Reading Only Attribute Values

The attrs_only parameter in read_xml function allows you to extract just the attribute values from the XML.

Recall our products.xml:

<products>
    <item type="electronics">
        <name>Laptop</name>
        <price>1000</price>
    </item>
    <item type="accessory">
        <name>Mouse</name>
        <price>20</price>
    </item>
</products>

Here, we have the type attribute within each item element, along with child elements for the product name and price.

Parse XML Focusing on Attributes

To read only attributes and ignore element values, you’d set attrs_only=True:

df = pd.read_xml("products.xml", attrs_only=True)
print(df)

Output:

          type
0  electronics
1    accessory

And this is what you’ll get if you don’t specify attrs_only:

df_default = pd.read_xml("products.xml")
print(df_default)

Output:

          type    name  price
0  electronics  Laptop   1000
1    accessory   Mouse     20

By default, both the type attribute and the element values name and price are extracted.

 

Specify Column Data Types

The dtype parameter in read_xml function lets you control the data types of the resulting columns.

By default, read_xml tries to infer the appropriate types:

df_default = pd.read_xml("products.xml")
print(df_default.dtypes)

Output:

type    object
name    object
price    int64
dtype: object

The price column is correctly inferred as an integer (int64).

Manually Setting Data Types

If you want to specify column data types explicitly, you can use the dtype parameter:

df = pd.read_xml("products.xml", dtype={"price": "float64", "name": "string"})
print(df.dtypes)

Output:

type             object
name     string[python]
price           float64
dtype: object

Here, we’ve set the price column to be a float (float64) and the name column as a string type (string).

 

Custom Conversion Functions for Specific Columns

With the converters parameter in read_xml, you can define custom functions to transform specific columns during the parsing process.

Let’s consider an XML named sales.xml with the following content:

<sales>
    <transaction>
        <product>Laptop</product>
        <amount>$1000.00</amount>
        <date>10th Sep 2023</date>
    </transaction>
    <transaction>
        <product>Mouse</product>
        <amount>$20.00</amount>
        <date>11th Sep 2023</date>
    </transaction>
</sales>

The amount values have dollar signs, and the date values have ordinal indicators, making them non-standard for automatic type inference.

Define Custom Conversion Functions

For our purposes, we’ll create two functions:

  • convert_currency: Removes the dollar sign and converts to a float.
  • convert_date: Parses the non-standard date format.
import pandas as pd
from datetime import datetime

def convert_currency(value):
    return float(value.replace('$', ''))

def convert_date(value):
    return datetime.strptime(value, "%dth %b %Y")

Using converters in read_xml

Now, apply these custom functions using the converters parameter:

df = pd.read_xml(
    "sales.xml", 
    converters={
        "amount": convert_currency, 
        "date": convert_date
    }
)
print(df)

Output:

   product  amount       date
0   Laptop  1000.0 2023-09-10
1    Mouse    20.0 2023-09-11

The amount column is now of type float, and the date column is a datetime object, ready for further analysis.

 

Parse Specific Columns as Dates

While you can use custom converters as shown earlier, for standard date formats, the parse_dates parameter in read_xml provides a more straightforward mechanism.

Consider an XML named events.xml:

<events>
    <event>
        <name>Conference A</name>
        <date>2023-09-10</date>
    </event>
    <event>
        <name>Workshop B</name>
        <date>2023-09-12</date>
    </event>
</events>

The date values are in the YYYY-MM-DD format, which is standard.

Parse Dates Using parse_dates

To ensure the date column is parsed as a datetime object, use the parse_dates parameter:

df = pd.read_xml("events.xml", parse_dates=['date'])
print(df.dtypes)

Output:

name            object
date    datetime64[ns]
dtype: object

Handling Multiple Date Columns

If your XML contains multiple date columns, you can easily parse all of them by providing a list:

df = pd.read_xml("events.xml", parse_dates=['date', 'another_date_column'])

 

Inferring and Enforcing dtypes

While Pandas can infer dtypes, sometimes you want more control or specificity.

The dtype_backend parameter in the read_xml function provides this level of detail by offering backend-specific dtype inferences.

By default, Pandas uses its dtype inference mechanism. Let’s save our XML data to a file named sample.xml:

<data>
    <entry>
        <value>1</value>
    </entry>
    <entry>
        <value>1.5</value>
    </entry>
</data>

Reading the file, you might observe:

import pandas as pd
df = pd.read_xml("sample.xml")
print(df.dtypes)

Output:

value    float64
dtype: object

Pandas inferred the value column as a float64. what if this is not the desired type?

Using the dtype_backend Parameter

The dtype_backend parameter allows you select a backend ("numpy_nullable" or "pyarrow") for dtype inference:

df_python = pd.read_xml("data.xml", dtype_backend="numpy_nullable")
df_lxml = pd.read_xml("data.xml", dtype_backend="pyarrow")

print("NumPy Nullable Backend:", df_python.dtypes)
print("pyarrow Backend:", df_lxml.dtypes)

Output:

NumPy Nullable Backend: value    Float64
dtype: object
pyarrow Backend: value    double[pyarrow]
dtype: object

With the pyarrow backend, the value column is inferred as double[pyarrow], which is more relevant in certain scenarios.

 

Transform XML Using XSLT Stylesheets

Extensible Stylesheet Language Transformations (XSLT) is a powerful tool for transforming XML documents.

The stylesheet parameter in the read_xml function lets you achieve this by applying an XSLT stylesheet.

Suppose you have an XML file, employees.xml:

<employees>
    <employee>
        <name>John</name>
        <role>Developer</role>
    </employee>
    <employee>
        <name>Mary</name>
        <role>Designer</role>
    </employee>
</employees>

Create an XSLT Stylesheet

If you want to transform the XML to keep only the employee names. The XSLT for this transformation could look like:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
    <xsl:template match="@*|node()">
        <xsl:copy>
            <xsl:apply-templates select="@*|node()"/>
        </xsl:copy>
    </xsl:template>
    <xsl:template match="role"/>
</xsl:stylesheet>

Save this stylesheet as transform.xslt.

Apply the XSLT Stylesheet Using stylesheet

To use the transformation when reading the XML data:

df = pd.read_xml("employees.xml", stylesheet="transform.xslt")
print(df)

Output:

   name
0  John
1  Mary

As seen, only the employee names are retained in the resulting DataFrame.

 

Stream Parsing: Load Large XML Files

Processing large XML files can be resource-intensive, especially when loading the entire document into memory.

Stream parsing processes XML elements as they’re encountered, without loading the entire file into memory.

Pandas provides this capability via the iterparse parameter in the read_xml function.

Using iterparse

Suppose you have a substantial XML file named bigdata.xml:

<data>
    <polygon>
        <shape>square</shape>
        <degrees>360</degrees>
        <sides>4.0</sides>
    </polygon>
    <polygon>
        <shape>circle</shape>
        <degrees>360</degrees>
    </polygon>
    <polygon>
        <shape>triangle</shape>
        <degrees>180</degrees>
        <sides>3.0</sides>
    </polygon>
</data>

Instead of reading the entire file at once, use iterparse to handle it incrementally:

df = pd.read_xml('sample.xml', iterparse={"polygon": ["shape", "degrees", "sides"]})
print(df.head())

Output:

      shape  degrees  sides
0    square      360    4.0
1    circle      360    NaN
2  triangle      180    3.0

The interparse argument is used to specify the structure of the XML and how it should be parsed.

Benchmark interparse

To compare the performance between using iterparse and without using it for reading a large XML file. Here’s the plan:

  1. Generate a large XML file.
  2. Measure the time taken to read the XML file without using iterparse.
  3. Measure the time taken to read the XML file using iterparse.
import pandas as pd
import random
import time
from io import BytesIO

# Step 1: Generate a large XML file
num_entries = 1000000
shapes = ["triangle", "square", "pentagon", "hexagon"]

xml_data = ''
for _ in range(num_entries):
    shape = random.choice(shapes)
    xml_data += f'{shape}{random.randint(100, 400)}{random.randint(3, 6)}'
xml_data += ''

with open("large_sample.xml", "w") as f:
    f.write(xml_data)

# Step 2: Measure time without iterparse
start_time = time.time()
df1 = pd.read_xml('large_sample.xml')
end_time = time.time()
without_iterparse_time = end_time - start_time
print(f"Time without iterparse: {without_iterparse_time:.4f} seconds")

# Step 3: Measure time with iterparse
start_time = time.time()
df2 = pd.read_xml('large_sample.xml', iterparse={"polygon": ["shape", "degrees", "sides"]})
end_time = time.time()
with_iterparse_time = end_time - start_time
print(f"Time with iterparse: {with_iterparse_time:.4f} seconds")

Output:

Time without iterparse: 42.4067 seconds
Time with iterparse: 35.7642 seconds

As you can see, interparse parsed the large XML file faster and the time difference is just for 1 million XML entries only.

 

Resource

https://pandas.pydata.org/docs/reference/api/pandas.read_xml.html

Leave a Reply

Your email address will not be published. Required fields are marked *